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Abstract

Solutions are known for a great deal of heat transfer problems with stationaryor analytically given transient boundary conditions. In thi
paper the well-knownDuhamel theoremwill be extended for boundary conditions not stated analytically. The fact that the energy supp
to a system depends on time in a stochastic manner is a problem in many technical applications. It will be shown by comparison w
well-known analytical calculations, that the extended method of Duhamel can be used for calculating the temperature distribution
fluxes in any case of transient variations of heat supply or temperatures forced upon the system. The method leads to a long serie
trigonometrical functions. In order to compute these in real time, an EDP with high capacity and velocity is necessary. But that sho
problem nowadays.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The Fourier’s differential equation describes transi
and local temperatures in a solid flat—plates, cylinders
spheres—with energy supply on their surfaces or by h
sources. For one-dimensional heat transfer in a plate wit
heat sources, the differential equation is

1

a

∂ϑ

∂t
= ∂2ϑ

∂x2 (1)

For many cases of boundary conditions, solutions are kn
[1–3] in the general form

ϑ = f

(
at

x2 ,
αs

λ
,
x

s

)
(2)

Thereby the boundary conditions are given as ana
functions: Sudden transition (jump), linear, periodic,
similar temperature rises in the surrounding medium or
the surface of the solid.

Due to technical problems, it is often impossible
express the boundary conditons in an analytical fo
because they are stochastic. This is, for instance, the cas
when in a combustion engine the efficiency or when o
surface the solar radiations by more or less clouding
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being permanently altered. The temperatures in the engin
or on the surface are being changed repeatedly, Fig. 1.

These permanent variations can be described using
well-known Duhamel theorem[4], which is also used in
the field of control engineering as convolution integral.
explanation of this method is given in [2].

Examples in the literature describe the use of the theo
for analytically given transient boundary conditions on
[1,2,5]. Extending it to stochastic variations in heat trans
processes is yet unknown but an obvious thing to do.

The problems mentioned above can be solved by num
cal integration of Eq. (1), too, in which with every alterati

Fig. 1. Surface temperatures by stochastic alterations of the energy supp
to a solid.
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Nomenclature

A amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

a thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

b heat penetration coefficient . . W·s1/2·m−2·K−1

c heat capacity . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

g gradient of temperature. . . . . . . . . . . . . . . . K·s−1

k overall coefficient of heat transfer W·m−2·K−1

N total number of steps

n step variable
q̇ heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

s thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
T total time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

t time variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

x coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
z dimensionless parameter, Eqs. (25), (68)

Greek symbols

α heat transfer coefficent . . . . . . . . . . W·m−2·K−1

ϑ temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
τ time, integration variable . . . . . . . . . . . . . . . . . . . s
λ heat conductivity . . . . . . . . . . . . . . . W·m−1·K−1

µm roots of transcendental equations
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ξ dimensionless parameter, Eq. (9)
ω frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

Subscripts

O surface
M medium
m mean value
0 for x = 0
s for x = s
s
er-
cts
hen
e-

1]:
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ple,
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in the boundary conditions the temperature field at this time
is the initial condition for the next integration step. There i
just one disadvantage with this method—as with all num
ical calculations—there is no information about the effe
of the physical parameters in the investigated process. W
solving it with Duhamel theorem, the effects of the param
ters remain recognizable.

2. Handling and testing the Duhamel theorem

The theorem of Duhamel is defined by the following [
If the temperature at the timet in a solid in which the initial
temperature is zero, while its surface is kept at a ste
temperature, is defined as follows

ϑ = F(x, y, z, t) (3)

then if the temperature on the surface is a transient func

ϑO = φ(t) (4)

the temperature in the solid is to be calculated by the inte

ϑ =
t∫

0

φ(τ) · ∂

∂t
F(x, y, z, t − τ )dτ (5)

The solution for one-dimensional heat conduction in
semi-infinite solid follows from Eq. (1)

ϑ = f

(
erfc

x

2
√

at

)
(6)

and therefore for the function F in Eq. (5)

F(x, t − τ ) = erfc
x

2
√

a(t − τ )
(7)

For a linear temperature rise on the surface, for exam
Eq. (4) changes to

ϑO = g · t with g = 
ϑO/
t (8)
The integration of Eq. (5) with Eq. (4), respectively Eq.
results in

ϑ = g · t
{(

1+ 2ξ2)erfc(ξ) − 2√
π

ξe−ξ2
}

= 4 · g · t(i2 erfc(ξ)
)

(9)

Hereξ = x

2
√

at
, the complementary error function erfc(ξ) =

1− erf(ξ) and the repeated integrals

in erfc(ξ) =
∞∫

ξ

in−1 · erfc(ξ)dξ (10)

For the heat flux in the solid, the following equation appl

q̇ = −λ
∂ϑ

∂x
= 2b
ϑO√

t

[
1√
π

e−ξ2 − ξ erfc(ξ)

]

= 2b
ϑO√
t

· i1 erfc(ξ) (11)

with b = √
λcρ. This example describes an analytica

given linear temperature rise in the time. Regarding
problems mentioned above with stochastic alterations o
temperature—rise or decrease,the important application o
Duhamel’s theorem concerns the fact, that many alterat
of temperatures or heat fluxes can successively happen
time.

Regarding the above example with a linear temperatur
rise, this statement means that the continuous rise ca
substituted by a series ofN temperature steps, Fig.
Eq. (8) will be reproduced with a sufficient number
small steps. This will be shown in the following to expla
the application of Duhamel’s theorem. In the case of o
one temperature step
ϑ0 (N = 1) Eq. (6) accordingly
applies:

ϑ = 
ϑO erfc(ξ) (12)
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Fig. 2. Linear temperature rise, divided inN jumps.

For subdividing in two steps
ϑO/2 (N = 2), while the sec-
ond step follows afterT/2:

ϑ = 
ϑO

2
erfc

x

2
√

aT
+ 
ϑO

2
erfc

x

2
√

a(T − T/2)

= 
ϑO

2

[
erfc

x

2
√

aT
+ erfc

x

2
√

aT/2

]

= 
ϑO

2

[
erfc(ξ) + erfc

(
ξ · √2

)]
(13)

Accordingly for three steps
ϑO/3 (N = 3):

ϑ = 
ϑO

3

[
erfc

x

2
√

aT
+ erfc

x

2
√

a(T − T/3)

+ erfc
x

2
√

a(T − 2T/3)

]

= 
ϑO

3

[
erfc(ξ) + erfc

(
ξ ·

√
3

2

)
+ erfc

(
ξ · √3

)]
(14)

Generally, forN steps with a temperature rise
ϑO/N in
every step and withT = N · 
t :

ϑ = 
ϑO

N
·

N∑
n=1

erfc
(
ξ
√

N/n
)

(15)

By increasingN , finally N → ∞, Eqs. (9) and (15) must b
identical, i.e.,

4 · i2 erfc(ξ) = lim
N→∞

[
1

N

N∑
n=1

erfc
(
ξ · √N/n

)]
(16)

This statement can be confirmed by checking. The ques
for a practical realization is how many steps are necessa
describe a given function (i.e., the linear rise) with suffici
accuracy. In Table 1 the series issue from Eq. (15) is ca
lated for different numbers ofN . It can be seen that a relativ
great number is needed to reach a complete conformity
Table 1
Linear temperature rise, Eq. (15) as function ofN , ξ

ϑ/gt ξ = 0.1 0.5 1.0 2.0

N = 1 0.8875 0.4795 0.1573 0.0046
5 0.8384 0.3295 0.0732 0.0013

10 0.8235 0.3041 0.0648 0.0010
20 0.8121 0.2919 0.0608 0.0008
40 0.8041 0.2859 0.0588 0.0008

∞ 0.7936 0.2799 0.0568 0.0007
= 4 · i2 erfc(ξ)

Table 2
Heat flux atx = 0 for a linear temperature rise, Eq. (17) as function ofN , ξ

q̇·√T
b
ϑO

ξ = 0.1 0.5 1.0 2.0

N = 1 0.5586 0.4394 0.2076 0.0103
5 0.7936 0.4440 0.1215 0.0031

10 0.8614 0.4220 0.1110 0.0025
20 0.9066 0.4102 0.1057 0.0022
40 0.9317 0.4048 0.1031 0.0020

∞ 0.9396 0.3993 0.1005 0.0020
= 2 · i1 erfc(ξ)

Eq. (9), but for technical calculations approx.N = 40 may
be sufficient.

The heat fluxq̇ for a linear temperature rise is to b
calculated from Eq. (15) by differentiation:

q̇ = −λ
∂ϑ

∂x
= b
ϑO√

π · √T

1

N

N∑
n=1

√
N/n · e−ξ2N/n (17)

This equation must be identical for small steps in the t
(i.e., great numbers ofN ) with Eq. (11). This can be see
in Table 2. It can be shown for other functions for t
temperature on the surfaceϑO(t), e.g., for a periodical sin
or cosine function, that the method of Duhamel reprodu
it arbitrarily exact according to the number of steps,
Appendix A.

3. Generalization of Duhamel’s theorem

3.1. Sudden transition (jump) of the temperature by a
boundary condition of the 1. kind

Duhamel’s theorem describes in general the effect
variable boundary conditions on the temperature field. In
foregoing text, this was shown for a linear temperature
on the surface. It is appropriate with non-linear variation
hold the step of time
t constant and to insert the height
the temperature jumps
ϑO according to the given function
Fig. 3.

The temperature distributionϑ = f(x, t) is therefore
described by the following equation at the timeT = N · 
t
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Fig. 3. Jumps of medium and surface temperatures by stochastic altera

ϑ = 
ϑO,1 erfc
x

2
√

aN
t
+ 
ϑO,2 erfc

x

2
√

a(N − 1)
t

+ 
ϑO,3 erfc
x

2
√

a(N − 2)
t
+ · · ·

+ 
ϑO,N−1 erfc
x

2
√

a · 2
t
+ 
ϑO,N erfc

x

2
√

a
t

=
N∑

n=1


ϑO,n erfc
x

2
√

a(N + 1− n)
t
(18)

with 
ϑO,n = ϑO,n − ϑO,n−1. The size of the time step

t and therefore the number of stepsN will be chosen by
means of the accuracy required.

The heat fluxq̇ is derived by differentiation of Eq. (18)

q̇ = b√
π · √T

N∑
n=1


ϑO,n

√
N

N + 1− n

× e−(x/2
√

a(N+1−n)
t )2
(19)

It is possible to calculate the resulting temperature distr
tion and the heat flux with the aid of Eqs. (18) and (19)
every additional change in the temperature or in the bou
ary conditions.

The series
∑

n will be extended by one term with eve
step. So the series can get very long. It can, howeve
observed that the first termsϑO,1, ϑO,2, . . . get successively
smaller with the time. For long series it is therefore justifi
to replace the first terms by an evaluation (see Section
It has to be remarked furthermore that every additional
requires a new calculation of the whole series, because
number of stepsN is not only an indicator for the number o
steps but is a parameter by itself.

3.2. Sudden temperature changes by boundary conditio
of the 3. kind

When solving technical problems, changes due to h
transfer from a fluid to a solid—the 3. kind of bounda
conditions—are more important than the boundary co
tions of the 1. kind. The following conditions have therefo
to be complied with: The heatflux by heat transfer from th
.Fig. 4. Temperature distribution in a semi-infinite solid by a bound
condition of the 3. kind.

fluid on the solid must be identical with the heat conduct
from the surfacex = 0 into the solid, see Fig. 4

α
(
ϑM(t) − ϑO(t)

) = q̇|x=0 (20)

The heat flux on the surface for a sudden change is give
Eq. (19) forx = 0

q̇|x=0 = b√
π · √T

N∑
n=1


ϑO,n

√
N√

N + 1− n
(21)

= b√
π · √
t

N∑
n=1


ϑO,n√
N + 1− n

(22)

= b√
π · √
t

N−1∑
n=0


ϑO,N−n√
n + 1

(23)

Eqs. (22) and (23) differ from one another in the numb
ing of the termsN : In Eq. (22)n = 1 is the first step, and in
Eq. (23)n = 0 is the last termN of the series.

The temperatures at the timeT are the sums of the jump

ϑM(T ) =
N∑

n=1


ϑM,n, ϑO(T ) =
N∑

n=1


ϑO,n (24)

The temperatures on the surfaceϑO are at first unknown
and must be calculated with the aid of Eq. (20) (or
iteration, if further influences dependent on the surf
temperature are given, e.g., radiation, condensation,
tranfer by free convection [7]).

The physical assumption for the connection of Eqs. (2
(24) is an immediate reaction of the surface temperature
change in the fluid temperature. The error by this assump
will disappear, if the steps
t are choosen as small a
possible.

By elimination of the unknown surface temperature
heat flux will be determined by the equations [1]: for jus
single jump of the fluid temperature
ϑM (N = n = 1)

ϑM − ϑO = (ϑM − ϑO,0)e
z2

erfc(z) (25)
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ϑM,n

ϑM,N − ϑO,N =
N∑

n=1


ϑM,n · ez2
erfc(z) (26)

with z = α
b

√

t(N + 1− n), or

ϑM,N − ϑO,N =
N−1∑
n=0


ϑM,N−n · ez′2
erfc

(
z′) (27)

with z′ = α
b

√

t(n + 1).

Using Eqs. (26) or (27), the heat fluxq̇|x=0 = α(ϑM,N −
ϑO,N) is determined directly. For the calculation of t

termsez2 · erfc(z), an integration within the series is, indee
necessary. The approximation equation (28) holds forz > 3

ez2 · erfc(z) ≈ 1√
π

(
1

z
− 1

2z3
+ 1 · 3

22z5

)
(28)

3.3. Jumps of the heat flux, boundary conditions of the 2
kind

A heat flux is generated with a gradient∂ϑ
∂x

q̇ = −λ
∂ϑ

∂x
(29)

This heat flux satisfies the same differential equation as
of the temperature (Fourier’s equation)

∂2q̇

∂x2
= 1

a

∂q̇

∂t
(30)

Therefore the solutions of Eq. (30) are in accorda
to those of the temperature. For constant heat flux on
surface of a semi-infinite solid with sudden addition oḟq|x=0
the following is valid

q̇ = q̇|x=0 · erfc
x

2
√

at
(31)

The temperature distribution in the solid by this heat flux
obtained by integration of Eq. (29)

ϑ − ϑO,0 = 2

b

√
t · q̇|x=0 · i1 erfc

x

2
√

at
(32)

and for the surface temperature

ϑO − ϑO,0 = 2√
π b

√
t · q̇|x=0 (33)

It is a generally known fact that the temperature gets
√

t

by q̇|x=0 = const, on the other side by a temperature√
t the heat fluxq̇|x=0 = const. If the heat flux is sudden

repeatedly altered, the temperature distribution is given

ϑ − ϑO,0 = 2

b

N∑
n=1


q̇n · √(N + 1− n)
t

× i1 erfc
x√ (34)
2 (N + 1− n)
t
and the temperature on the surface

ϑO,N − ϑO,0 = 2√
π b

N∑
n=1


q̇n · √(N + 1− n)
t (35)

In the case ofq̇|x=0 = const, it is to be set forn = 1:

q̇1 = q̇|x=0, and for n � 2: 
q̇n = 0. With N · 
t = t

Eq. (33) is valid again.

4. Extension to finite solids—flat plates with two
boundaries

In semi-infinite solids, the solutions of Fourier’s equat
are given as a function of the variableat

x2 . In finite solids,
see Fig. 5, additional conditions for the heat transfer on b
surfaces are to be stated. For convective heat transfer
usual to define the Biot number as a parameter for the
in question

for x = 0: Bi0 = α0s/λ, for x = s: Bis = αss/λ (36)

The solutions of Eq. (1) appear in form of series w
trigonometrical functions [1,2,8]. In the integral equ
tions (5) with (6), these series are used instead of the e
functions.

4.1. Boundary conditions of the 1. kind on the one side
of the 3. kind on the other side

Up to now there is assumed a sudden jump of the tem
ature
ϑM on the sidex = 0, immediately followed from
the surface temperature
ϑO , i.e.,Bi0 = ∞, boundary con-
dition of the 1. kind. On the other sidex = s a boundary con
dition of the 3. kind is given byBis = αss/λ. In this case, the
solution for the temperature distribution gets forBi0 = ∞
ϑ − ϑO,0

= 
ϑO

[
1+ Bis(1− x/s)

1+ Bis

−
∞∑

m=1

2(µ2
m +Bi2s )sin(µmx/s)

µm(Bis + Bi2s + µ2
m)

e−µ2
m·at/s2

]
(37)

Fig. 5. Temperature distribution in a finite solid with boundary conditio
of the 3. kind on both sides.
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with µm the positive roots of the transcendent equation

µm + Bis · tgµm = 0 (38)

Eq. (37) describes the stationary temperature distribution
t → ∞
ϑ − ϑO,0 = 
ϑO

1+ Bis(1− x/s)

1+ Bis

= 
ϑO
1/αs + (s − x)/λ

1/αs + s/λ
(39)

The temperature distribution at the timeT = N · 
t can
be indicated for repeated jumps
ϑ0,n in constant time step

t with the aid of Duhamel’s theorem again (see Eq. (15

ϑ − ϑO,0 = 1+ Bis (1− x/s)

1+ Bis
·

N∑
n=1


ϑO,n

−
N∑

n=1


ϑO,n ·
∞∑

m=1

fmsin(µmx/s)

µm

× e−(N+1−n)·µ2
ma
t/s2

(40)

with fm = 2 Bi2s +µ2
m

Bis+Bi2s +µ2
m

.

4.2. Boundary conditions of the 3. kind on both sides of
solid

There are two ways to solve the problem, see Eqs. (2
(23) and Eqs. (25) and (27).

(1) The temperature on the surfacex = 0 has to be
calculated at every step from the following relations fo
temperature jump in the medium
ϑM andBi0 = α0s/λ

α0(ϑM,N − ϑO,N) = q̇|x=0 = −λ
∂ϑ

∂x
|x=0 (41)

In connection with Eq. (40), the heat flux is defined by

q̇|x=0 = Bis · λ/s

1+ Bis
(ϑO,N − ϑO,0)

+ λ

s

N∑
n=1


ϑO,n ·
∞∑

m=1

fm · e−(N+1−n)·µ2
ma
t/s2

(42)

and accordingly the surface temperature

ϑO,N − ϑO,0

= (ϑM,N − ϑO,0)Bisα0/αs

×
[

Bisα0

αs

+ Bis
1+ Bis

+
∞∑

m=1

fm · e−µ2
ma
t/s2

]−1

+
N−1∑
n=1


ϑO,N−n ·
∞∑

m=1

fm · e−µ2
ma
t/s2

× (
1− e−µ2

mna
t/s2)
×

[
Bisα0

αs

+ Bis
1+ Bis

+
∞∑

fm · e−µ2
ma
t/s2

]−1

(43)

m=1
The sum
∑

m converges for small steps
t very slowly. For
short times, it is therefore useful and justified to employ
results for the semi-infinite solid, see below Section 6. (N
when transforming Eqs. (41)–(43) the following identity
used
N∑

n=1


ϑO,n ·f (N +1−n)=
N−1∑
n=0


ϑO,N−n ·f (n+1) (44)

by means of which it is possible to eleminate the unkno
temperatureϑO,N from the sum withn = 0.)

(2) The unknown surface temperature can be elimina
in accordance with the above mentioned Eq. (25).
solution for asymmetrical boundary conditions of the
kind—x = 0: α0(ϑM − ϑO) = q̇|x=0 andx = s: αs(ϑx=s −
ϑO,0) = q̇|x=s—therefore is as follows [3]

ϑ − ϑO,0

ϑM − ϑO,0

= k

(
s − x

λ
+ 1

αs

)

− 2
∞∑

m=1

{
sinµmBi0

[
µm cos

s − x

s
µm

+ Bis sinµm
s − x

s

]
e−µ2

mat/s2
}

× {
µm

[
2µm sin2 µm

+ (Bi0 + Bis )(µm − sinµm cosµm)
]}−1 (45)

with the transcendent equation forµm

tgµm = µm(Bi0 + Bis )

µ2
m − Bi0 · Bis

(46)

The first term in Eq. (45) represents the station
temperature distribution fort → ∞, with k the overall hea
transfer coefficient1

k
= 1

α0
+ s

λ
+ 1

αs
.

The heat flux in the solid follows by differentiation o
Eq. (45)

q̇ = (ϑM − ϑO,0)

[
k + 2α0

∞∑
m=1

[
sinµm

(
µm sinµm

s − x

s

− Bis cosµm
s − x

s

)
e−µ2

mat/s2
]

× [
2µm sin2 µm

+ (Bi0 + Bis )(µm − sinµm cosµm)
]−1

]
(47)

and forx = 0

q̇|x=0 = (ϑM − ϑO,0)

×
(

k + 2α0

∞∑
m=1

f (µm,Bi0,Bis )e
−µ2

mat/s2

)
(48)

with f (µm,Bi0,Bis ) = sinµm[µm sinµm−Bis cosµm]
2
2µm sin µm+(Bi0+Bis )(µm−sinµm cosµm)
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The following is valid for repeated jumps with Duhame
theorem

q̇|x=0 = k(ϑM,N − ϑO,0)

+ 2α0

N∑
n=1


ϑM,n

∞∑
m=1

f (µm,Bi0,Bis)

× e−(N+1−n)µ2
ma
t/s2

(49)

or

q̇|x=0 = k(ϑM,N − ϑO,0)

+ 2α0

N−1∑
n=0


ϑM,N−n

∞∑
m=1

f (µm,Bi0,Bis)

× e−(n+1)µ2
ma
t/s2

(50)

5. Breaking off the series afternA steps, estimating the
error

Small steps in the time are needed if the tempera

ϑM(t) must be reproduced with high accuracy or if t
alterations follow in a long interval. In these cases,
number of stepsN can grow very high and therefore th
question is whether the series can be broken off afternA

steps and whether the residual terms of the serie ca
replaced by an estimation.

As it is seen in Eqs. (27), (42) or (48), the first alteratio
in 
ϑM hold a decreasing effect with growing numbersN

of steps, i.e., the temperature distribution is being influen
by the last steps strongest. The series in the equations n
above can be written in a generalized form

ϑM,N − ϑO,N =
N−1∑
n=0


N−n · F(n + 1) (51)

e.g., Eq. (27):

ϑM,N − ϑO,N =
N−1∑
n=0


ϑM,N−n · ez′2 · erfc
(
z′) (52)

or Eq. (35)

ϑO,N − ϑO,0 = 2√
π b

N−1∑
n=0


q̇N−n

√
(n + 1)
t (53)

or Eq. (48)

q̇|x=0 = 2α0

N−1∑
n=0


ϑM,N−n · f · e−ν(n+1) (54)

These sums may be divided into a correctly calcula
sum and a restR, see Fig. 6:

N−1∑
n=0


N−n · F(n + 1)

=
nA∑


N−n · F(n + 1) +
N−1∑


N−n · F(n + 1) (55)

n=0 nA+1
d

Fig. 6. Illustration of a series breaking off.

The remainder termR = ∑N−1
nA+1 
N−n · F(n + 1) has

to be approximated by the sum of the jumps
∑N−1

nA+1 =

ϑM,N−n (or

∑N−1
nA+1 
q̇N−n) multiplied with a mean value

F(n + 1) for the number of stepsnA + 1 toN − 1:

R = F(n + 1)

N−1∑
nA+1


N−n (56)

It is obvious that this mean value can be replaced by
integration instead of the sum in the same range

F(n + 1) = 1

(N − 1) − (nA + 1)

N−1∫
nA+1

F(n + 1)dn (57)

The integration with the sum of Eqs. (52)–(54) leads t

F = 2b

α0
√

π
√


t

√
N − √

nA + 2

(N − 1) − (nA + 1)
(58)

respectively

F =
∑ 2

√

t

b
√

π
· 2

3
· N3/2 − (nA + 2)3/2

(N − 1) − (nA + 1)
(59)

respectively

F = e−νN

νN
· e1−(nA+2)/N − 1

1− (nA + 2)/N
(60)

(Note: the approximate equation is used in the integra
of Eq. (58)

ez′2 · erfc
(
z′) ≈ 1

z′ · √π
(61)

for z′ = α0
b

√
(n + 1)
t > 5. This can be done, becau

breaking off the sums is only possible following a gre
number of stepsnA.)
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If the remainderR consists of only one term,N − 1 =
nA +1, Eqs. (58)–(60) result inF = 0/0. The limiting values
are

R = b

α0
√

π
√


t
· 1√

N
· (ϑM,N−nA−1 − ϑM,0) (62)

respectively

R =
∑

q̇ · √N (63)

respectively

R = f · e−ν·N

ν · N (ϑM,N−nA−1 − ϑM,0) (64)

Eqs. (58) and (62) for�F andR, as well as (60) and (64
converge with growingN , but not Eqs. (59) and (63) for th
heat flux. Therefore, the breaking off the sums of the he
flux is not allowed. Eqs. (59) and (63) are irrelevant.

It can be recognized in the above equations that
implementation of the correctly calculated series in
remainder termR occurs continously, which is a sign th
the rest term has been calculated in a suitable way.

6. Approximate solutions

The complete description of the temperature distribu
from the first step to steady (or quasi-steady) temperat
requires long series with slow convergency, especially
the beginning. Several approximate solutions are know
handle this difficulty [2,6,8]. Thereby, the complete solut
is divided into two parts: one part, in which the equatio
of the semi-infinite solid are valid at the beginning of t
process, and a second part, in which the steady temperatur
will be obtained. In this second part, only the first term of
series

∑
m with µ1 is necessary to describe the temperat

process in the time.
The example in Figs. 7 and 8 shows the heat fluxq̇|x=0

for a flat plate with asymmetric boundary conditions of
3. kind by a sudden jump
ϑM in the fluid medium and an
initial temperatureϑO,0 �= f (x), see above Section 4.2.

In Figs. 7 and 8 the heat fluẋq|x=0 = f (t), respectively,
= f (at/s2) is related to the stationary heat fluxq̇ = k(ϑM −
ϑO,0):

(1) the complete solution after Eq. (48),
(2) the solution alone with the first termµ1 (µ1 = f (Bi0,

Bis ), see Fig. 9,
(3) the solution for the semi-infinite solid after Eq. (26).

These figures show:

(1) at

s2 < 0.3: Eq.(26) and Eq. (48) are identical.
(2) at

s2 > 0.3: solution with the first termµ1 is identical to
the complete solution.

(3) at

s2 > 1.6: the steady-state has been obtained,q̇|x=0/

k(ϑM − ϑO,0) = 1.
Fig. 7. Dimensionless heat fluẋq|x=0 for short times after Eq. (25) with
Eq. (20), after Eq. (48) for the complete solution and after Eq. (48)
the solution withµ1 only. The parameters are:α0 = 40 W·m−2·K−1,
αs = 20 W·m−2·K−1, λ = 0.4 W·m−1·K−1, c = 1000 J·kg−1·K−1,
ρ = 400 kg·m−3, b = 400 W·s1/2·m−2·K−1, a = 10−6 m2·s−1,
k = 8 W·m−2·K−1, µ1 = 1.5094.

Fig. 8. Like Fig. 7, but permuted heat transfer coefficients:α0 =
20 W·m−2·k−1, αs = 40 W·m−2·K−1.

These statements can be generalized, because the
functional dependency of the parameters is given:

z2 = α2t

λcρ
∼ µ2

1at

s2 with µ ∼ αs

λ
.

Therefore, two possibilities exist for an approximate cal
lation of heat flux in the above problem:
(1)

at

s2 < 0.3:
q̇|x=0

k(ϑM − ϑO,0)
= α0

k
ez2

erfc(z) (65)

at

s2 > 0.3:
q̇|x=0

k(ϑM − ϑO,0)

= 1+ 2 · α0
f (µ1) · e−µ2

1at/s2
(66)
k



W. Kast / International Journal of Thermal Sciences 43 (2004) 1025–1036 1033

r

via-
ing
sfe

ved

for
e.

g th
tice,
e
er

nd
tep

nd
the
Fig. 9. The first rootµ1 of Eq. (46), from [3].

(2)

α0

k
ez2

erfc(z) > 1:
q̇|x=0

k(ϑM − ϑO,0)
= α0

k
ez2

erfc(z) (67)

α0

k
ez2

erfc(z) � 1:
q̇|x=0

k(ϑM − ϑO,0)
= 1 (68)

with z = α0

b

√
(N + 1− n)
t andk the overall heat transfe

coefficient.
The second approximation results in some bigger de

tions—up to 10%—which may be admissible consider
the uncertainty of other assumptions, e.g., the heat tran
coefficients.

The approximations by Eqs. (65)–(68) should be pro
for a boundary condition of the first kind, i.e.,α0 = ∞, too,
see Fig. 10. This confirms the proposed approximations
the entire range of heat transfer coefficients to a flat plat

Eqs. (65)–(68) are valid for just a single jump
ϑM . For
repeated jumps, these equations can be extended usin
Duhamel’s theorem as shown above. Thereby it is to no
that with every jump on the sidex = 0, a new temperatur
front in the solid will be produced, which reaches the oth
sidex = s in the dimensionless timeat/s2 = 0.3.

When applying the approximation equations (65) a
(66), Eq. (26) has to be used for a calculation if the s
numbernt < 0.3s2/(a
t):

q̇|x=0

k(ϑM − ϑO,0)

= α0

k

N∑
n=1


ϑM,n

ϑM,N − ϑO,0
ez2(N+1−n)
t erfc(z) (69)
r

e

Fig. 10. Like Fig. 7, butα0 = ∞, k = 10 W·m−2·K−1, µ1 = 2.0288.

Fig. 11. Illustration to Eqs. (65) and (66).

and Eq. (40) withµ1 has to be used ifnt > 0.3s2/(a
t):

q̇|x=0

k(ϑM − ϑO,0)

= 1+ 2
α0

k

N∑
n=1


ϑM,n

ϑM,N − ϑO,0

× f

(
µ1,

α0s

λ
,
αss

λ

)
· e−(N+1−n)aµ2

1
t/s2
(70)

The number of the stepsnt is the same for all jumps
ϑM,n.
Eq. (70) is valid for the stepsn > nt with the sum(nt + 1)

to N . This procedure is illustrated in Fig. 11.
When applying the approximation equations (67) a

(68), every jump has to be calculated with Eq. (26) until
steady state value

q̇|x=0

k(ϑM,N − ϑO,0)
= 
ϑM,N

ϑM,N − ϑO,0
(71)

has been reached. When finally, all jumps
ϑM,n have
reached the steady state, thefollowing equation is valid

q̇|x=0 =
∑N

n=1 
ϑM,n = 1 (72)

k(ϑM,N − ϑO,0) ϑM,N − ϑO,0
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Fig. 12. Illustration to Eqs. (67) and (68).

The number of stepsnk is the same for every jump, a
demonstrated in Fig. 12.

7. Summary

The theorem of Duhamel makes it possible to cal
late the effects of repeated alterations in the bound
conditions—in the fluid or in the surface temperatures o
the heat transfer coefficients—for the temperature distribu
tion and the heat flux in a solid. The alterations in the bou
ary conditions can be stochastical and will be adapted t
imposed or forced process by jumps with steps in the ti
This procedure results in mathematical series, which will be
extended by every new alteration for further steps.

The application for semi-infinite solids is possible w
the aid of error function. For solids with two boundarie
e.g., flat plates, solutions are known with Fourier functio
which by Duhamel’s theorem result in double series. A s
ficient accuracy for technical applications will be reach
by an approximate solution for the semi-infinite solid a
for longer times from an approximate Fourier function (fi
term of the series). This process requires a change from
mode to the other during the calculations, but this can
done numerically. Based on the statements mentioned ab
Duhamel’s theorem is an universal tool to calculate c
secutive alterations of boundary conditions and their eff
on the temperature distribution and heat flux. This has b
demonstrated by some examples.

Appendix A. Testing the theorem of Duhamel for a
temperature oscillation by a periodic function

A further test for the extended Duhamel’s theorem will
demonstrated in the application for a temperature oscilla
in the medium by a sine or cosine function.

ϑM − ϑm = Asin(ωt) (73)

or

ϑM − ϑm = Acos(ωt) (74)
,

with A the amplitude of the oscillation,ϑm the constan
mean temperature,ω = 2π/t0, t0 the period. The tempera
ture field for the stationary state (t → ∞) is described for
the boundary conditions of the first kind by known equ
tions, corresponding to Eq. (73):

ϑ(x, t) − ϑm = Ae−x
√

π/at0 · sin

(
ωt − x

√
π

at0

)
(75)

and to Eq. (74):

ϑ(x, t) − ϑm = Ae−x
√

π/at0 · cos

(
ωt − x

√
π

at0

)
(76)

For the heat flux atx = 0, it follows with q̇|x=0 = −λ∂ϑ
∂x

:

q̇|x=0 = Ab
√

ω sin

(
ωt + π

4

)
(77)

and

q̇|x=0 = Ab
√

ω cos

(
ωt + π

4

)
(78)

The preceding equations are valid, as stated above
the stationary state after the transient disturbances a
beginning of the oscillations have disappeared. The eff
of the disturbances are different for an oscillation o
sine function and of a cosine function. For a sine functi
Eq. (73), the temperature rise in the beginning is ne
linear and the heat flux can becalculated with Eq. (11) an

ϑ0 = Aωt cos(ωt), written in a dimentionless form

q̇|x=0

Ab
√

ω
= 2√

π

√
ωt cos(ωt) (79)

with ωt < 0.1. For a cosine function, Eq. (74), a jump
the surface temperature is forced fort = 0, ∂ϑ

∂t
|t=0 = ∞.

Therefore the heat flux att = 0 is infinite. For small values
of ωt it is valid (Eq. (17),N = 1):

q̇|x=0

Ab
√

ω
= 1√

π
· 1√

ωt
(80)

with ωt < 0.1.
Both these cases of a harmonic oscillation can be der

from a general solution in [3] (Eqs. (11), (20)). There a
two functionsu∗ andv∗ (parts of the error function erf(z)

with complex argument f(
√

ωt
2 , x

2
√

at
+

√
ωt
2 )) defined. For

the corrections of the heat flux by the disturbances,
differential quotients ofu∗ andv∗ are needed:

q̇|x=0 = −λ
∂v∗

∂x

∣∣∣
x=0

= −Ab
√

ω

2
√

ωt
· ∂v∗

∂(x/2
√

at )

∣∣∣
x=0

(81)

and

q̇|x=0 = −λ
∂u∗

∂x

∣∣∣
x=0

= Ab
√

ω

2
√

ωt
· ∂u∗

∂(x/2
√

at )

∣∣∣
x=0

(82)

In Fig. 13 Eqs. (81) and (82) are drawn, calculated fr
the tabulated value in [3]. For the heat flux atx = 0 with
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Fig. 13. Corrections of the heat flux due to disturbances.

regard to the disturbances it follows:

q̇|x=0

Ab
√

ω
= sin

(
ωt + π

4

)
− 1

2
√

ωt
· ∂v∗

∂(x/2
√

at )

∣∣∣
x=0

(83)

q̇|x=0

Ab
√

ω
= cos

(
ωt + π

4

)
+ 1

2
√

ωt
· ∂u∗

∂(x/2
√

at )

∣∣∣
x=0

(84)

It has to be proved whether the extended Duha
theorem can be used for calculating these Eqs. (83) and

The general equations of Duhamel’s theorem are der
in Section 3, Eqs. (18) and (19) for a boundary condition
the 1. kind. For an oscillation of a sine function, Eq. (7
the temperature changes
ϑO,n for every step
t are given
by


ϑO,n = ∂ϑ

∂t

∣∣∣
n
· 
t

= Aω
t · cos(nω
t), n � 1 (85)

and Eq. (19) for the heat flux on the surfacex = 0 gives

q̇|x=0

Ab
√

ω
=

√
ω
t√
π

·
N∑

n=1

cos(nω
t)√
N + 1− n

(86)

For an oscillation of a cosine function, Eq. (74), the fi
temperature change fort = 0 is a jump


ϑO,1 = A (87)

and then the following changes obey the analogous equ
to Eq. (82)


ϑO,n = −Aω
t · sin(nω
t), n � 2 (88)

In this case Eq. (19) has to be written in the form

q̇|x=0

Ab
√

ω
= 1√

π
· 1√

ω
t
· 1√

N

−
√

ω
t√
π

N∑ sin(nω
t)√
N + 1− n

(89)

n=2
.

Fig. 14. Temperature oscillation by a sine function and corresponding
flux at x = 0 for a boundary condition of the 1. kind in comparison of t
analytical solution Eq. (83) with the Duhamel theorem Eq. (86).

Fig. 15. Like Fig. 14, in comparison to Eqs. (84) and (89) for a tempera
oscillations by a cosine function.

Fig. 14 for the sine function and Fig. 15 for the cosin
function show a comparison of the analytical solutions
Eqs. (77) and (78), respectively (83) and (84) with
solutions by Duhamel’s theorem Eqs. (86) and (89). It
be seen that the phase shift ofπ/4 sets in very rapidly and
the disturbances vanish after one period of the oscillat
Most significantly, it has to be recognized that the analyt
solutions and the solutions by Duhamel’s theorem
almost identical. Small differences are due to numeric
inaccuracies. A condition forthese good agreements is
choose the time steps as small as possible,ω
t < 0.002=
0.1◦, even if the number of stepsN will grow reciprocally to
ω
t (compare the dotted line and the full line for Eq. (8
respectively Eq. (89) in Figs. 14 and 15).

The examples above demonstrate in a convincing ma
how the Duhamel theorem is applied for more comp
temperature variations.
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