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Abstract

Solutions are known for a great deal of heat &fan problems with stationamyr analytically given trarient boundary conditions. In this
paper the well-knowrDuhamel theoremwvill be extended for boundary conditions not statedlgtically. The fact that the energy supply
to a system depends on time in a stochastic manner is a problemnin technical applications. It will be shown by comparison with
well-known analytical calculations, that the extended method of Duhamel can be used for calculating the temperature distributions and heat
fluxes in any case of transient variations of heat supply or temperatures forced upon the system. The method leads to a long series of error c
trigonometrical functions. In order to compute these in real time, an EDP with high capacity and velocity is necessary. But that should be no
problem nowadays.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction being permanently altered. &temperatures in the engine
or on the surface are being changed repeatedly, Fig. 1.

The Fourier's differential equation describes transient =~ These permanent variations can be described using the
and local temperatures in alib flat—plates, cylinders,  well-known Duhamel theorenf4], which is also used in
spheres—with energy supply on their surfaces or by heatthe field of control engineering as convolution integral. An
sources. For one-dimensional heat transfer in a plate withoutexplanation of this method is given in [2].

heat sources, the differential equation is Examples in the literature describe the use of the theorem

190 820 for analytically given trasient boundary conditions only

-2 _77 (1) [1,2,5]. Extending it to stochastic variations in heat transfer

adt  9x? processes is yet unknown but an obvious thing to do.

For many cases of boundary conditions, solutions are known The problems mentioned above can be solved by nhumeri-

[1-3]in the general form cal integration of Eq. (1), too, in which with every alteration
at os x

ﬁ_f(xz’ )»’s) @) 3

Thereby the boundary conditions are given as analytic 0

functions: Sudden transition (jump), linear, periodic, or r

similar temperature rises in the surrounding medium or on
the surface of the solid.

Due to technical problems, it is often impossible to
express the boundary conditons in an analytical form,
because they are stochastic. 98, for instance, the case
when in a combustion engine the efficiency or when on a
surface the solar radiations by more or less clouding are —

Fig. 1. Surface temperatures by stosfi@alterations of the energy supply
E-mail addressheller@tvt.tu-darmstadt.de (W. Kast). to a solid.
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Nomenclature

A amplitude. ... K  Greek symbols
. .. —1
a thermal diffusivity ................... o heat transfer coefficent ... . ... ... W-2.K-L
b heat penetration coefficient .. #//2m=2.K~* s TeMPErature ........oeeeee e e, [
c heatcapacity.................... kg1 T time, integrationvariable................... 5
g gradient of temperature................ sk A heat conductivity ............ XEE WK1
k overall coefficient of heat transfer Wi—2.K-1 ~ “m  roots of transcendental equations
0 density . ......ooveieiia kg3
N total number of steps ) )
iabl £ dimensionless parameter, Eq. (9)

n step variable w frequency ...l 15
g heat fluxX. ... oo, Wi—2 Subscriot
s thickness ... m SUPSCrpis
T total tiMe . .. oo s O surface

. . M medium
t timevariable................ ... L S

) m mean value

x coordinate .................ooiiiia m o forx =0
Z dimensionless parameter, Egs. (25), (68) s forx—=s

in the boundary conditions the tgarature field at thistime  The integration of Eq. (5) with Eq. (4), respectively Eq. (8)
is the initial condition for the nebintegration step. Thereis  resultsin

just one disadvantage with this method—as with all numer- 2 )
{(1 +2£2) erfo(s) — Tge—f }
T

ical calculations—there is no information about the effects ¥ =& -1
of the physical parameters in the investigated process. When

solving it with Duhamel theorem, the effects of the parame- =4.¢. t(i2 erfc(&)) 9
ters remain recognizable. Hereé = %ﬁ the complementary error function ef§¢ =
1 — erf(¢) and the repeated integrals
2. Handling and testing the Duhamel theorem ®
i"erfc(€) = / i"1. erfo) de (10)
The theorem of Duhamel is defined by the following [1]: :

If the temperature at the timan a solid in which the initial

temperature is zero, while its surface is kept at a SteadyForthe heat flux in the solid, the following equation applies

temperature, is defined as follows . 0 2bAVo[ 1 _,2
g =120 = [—e g erfo(s)}
9 =F(x,y,z,1) 3) dx Vi Lvm
i i i i 2bAY
then if the temperature on the surface is a transient function _ 0 iLerfo) (11)
9o =0 (1) (4) Vi

the temperature in the solid is to be calculated by the integralWith b = /Acp. This example describes an analytically
given linear temperature rise in the time. Regarding the

t ad problems mentioned above with stochastic alterations of the
0= /qﬁ(f) ' EF(X’ izt —T)dr (5) temperature—rise or decreaglee important application of
0 Duhamel’s theorem concerns the fact, that many alterations
The solution for one-dimensional heat conduction in a of temperatures or heat fluxes can successively happen any

semi-infinite solid follows from Eq. (1) time.
X Regarding the above exaneplith a linear temperature
U= f<erfc—> (6) rise, this statement means that the continuous rise can be
2/at . : ;

) ) substituted by a series oV temperature steps, Fig. 2.
and therefore for the function F in Eq. (5) Eq. (8) will be reproduced with a sufficient number of
F(x,t —1) = erf—> 7) small steps. This will be shown in the following to explain

2ya(t —7) the application of Duhamel’s theorem. In the case of only
For a linear temperature rise on the surface, for example,one temperature stepdg (N = 1) Eq. (6) accordingly
Eq. (4) changes to applies:

do=g-t Withg=Avo/At (8) ¥ = Ao erfe&) (12)
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+ . Table 1
Linear temperature rise, Eq. (15) as functiom\afg
ARy /gt £=01 05 1.0 2.0
P o N=1 0.8875 0.4795 0.1573 0.00468
4 5 0.8384 0.3295 0.0732 0.00130
T 10 0.8235 0.3041 0.0648 0.00101
| 20 0.8121 0.2919 0.0608 0.00088
40 0.8041 0.2859 0.0588 0.00082
At o 0.7936 0.2799 0.0568 0.00076
=4.i2erfc()
— t
Table 2
N-At =T Heat flux atx = O for a linear temperature rise, Eq. (17) as functiovo
Fig. 2. Linear temperature rise, divided Ahjumps. % £=01 0.5 1.0 2.0
N=1 0.5586 0.4394 0.2076 0.01033
PSP _ ; ; 5 0.7936 0.4440 0.1215 0.00311
Fo(rjsubdl;/ltldllng in ]Ewo st?pal90/2 (N = 2), while the sec 10 0.8614 0.4220 01110 0.00250
ond step follows after’/2: 20 0.9066 0.4102 0.1057 0.00222
40 0.9317 0.4048 0.1031 0.00209
9 — Ao ¢ X Avo ¢ X
- 2 er sz + 2 er c2 T —T/2) oo 0.9396 0.3993 0.1005 0.00202
=2.ilerfce)
_ A% [erfc i + erfc al }
2 2v/aT 2/aT/2 _ )
Eq. (9), but for technical calculations appra%.= 40 may
Ao be sufficient
= —erf erfc(€ - v/2 13 : . .
2 [ o)+ (5 )] (13) The heat fluxg for a linear temperature rise is to be
Accordingly for three stepa /3 (N = 3): calculated from Eq. (15) by differentiation:
N
Avo x X . v bAVo 1 —E2N/n
9 =—"|erfc +erfc——— g=—rA —=——"—"=+ N/n-e (17)
2 oo e = = Y

X This equation must be identical for small steps in the time
2/a(T = 2T/3) (i.e., great numbers a¥) with Eq. (11). This can be seen
in Table 2. It can be shown for other functions for the
Ao 3 temperature on the surfade (), e.g., for a periodical sine
=3 [erfc(g) + erfc(é \/%) +erfo(g ﬁ)} (14) or cosine function, that the method of Duhamel reproduces
it arbitrarily exact according to the number of steps, see

+ erfc

Generally, forN steps with a temperature rigedo /N in

> Appendix A.
every step and witll = N - At:
APy
U= To . Zerfc(sw/N/n) (15) 3. Generalization of Duhamel’s theorem
n=1
By increasingV, finally N — oo, Egs. (9) and (15) mustbe ~ 3-1. Sudden transition (jump) of the temperature by a
identical. i.e. boundary conditia of the 1. kind
N . .
. 1 Duhamel’s theorem describes in general the effects of
i2 — - . - I .

4.icerfe€) = Nlinoo|:N Xierfc(é vVN/n )] (16) variable boundary conditions on the temperature field. In the

foregoing text, this was shown for a linear temperature rise
This statement can be confirmed by checking. The questionon the surface. It is appropriate with non-linear variations to
for a practical realization is how many steps are necessary tohold the step of time\r constant and to insert the height of
describe a given function (i.e., the linear rise) with sufficient the temperature jumps&®o according to the given function,
accuracy. In Table 1 the series issue from Eq. (15) is calcu- Fig. 3.
lated for different numbers @¥ . It can be seen that a relative The temperature distributiod® = f(x,7) is therefore
great number is needed to reach a complete conformity with described by the following equation at the tiffie= N - At
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Fig. 3. Jumps of medium and surface temperatures by stochastic alterations19- 4 Temperature distribution in a semi-infinite solid by a boundary
condition of the 3. kind.

X
¥ = Avp.1erfc———— + Adp serfc
o JaNAT ,

aN At 2Va(N — 1At fluid on the solid must be identical with the heat conduction
X X ) .
+ AP, aerfc 4. from the surface: = 0 into the solid, see Fig. 4
0355 JalN =2 At .
x x a(@u @) —90) =qli=0 (20)
+ Adp y—1erfc————— + A nerfc
2va - 2At 2VaAt The heat flux on the surface for a sudden change is given by
N x Eqg. (19) forx =0
= Z Ao perfc (18)
= ' 2/a(N +1—n)At

N
feeo= = 3 A00,
with A%, = %0.n — Y0.n_1. The size of the time steps 9¢1x=0= n
’ : : ) w-NT N+1-n
At and therefore the number of stepswill be chosen by VT NT n=1
means of the accuracy required. AB0

N
b
The heat fluxj is derived by differentiation of Eq. (18) RIS, > NS (22)
’ n=1 -

b N N N-1
= — AV —_— b —~ AV N—
1 ﬁﬁ; O N+1-n 9.N-n (23)

IRV ENIN e SV
 o—(x/2V/alNFI=m AT )? (19) .

Egs. (22) and (23) differ from one another in the number-
It is possible to calculate the resulting temperature distribu- ing of the termsV: In Eq. (22)n = 1 is the first step, and in
tion and the heat flux with the aid of Eqgs. (18) and (19) for Eq. (23)n =0 is the last terniV of the series.
every additional change in the temperature or in the bound-  The temperatures at the tirfieare the sums of the jumps
ary conditions.

The seriesy_n will be extended by one term with every N N
step. So the series can get very long. It can, however, be?m(T) = ZA’?M’"’ vo(T) = ZAT}Q” (24)
observed that the first ternds 1, 90,2, . . . get successively n=1 n=1
smaller with the time. For long series it is therefore justified The temperatures on the surfatg are at first unknown
to replace the first terms by an evaluation (see Section 5).and must be calculated with the aid of Eq. (20) (or by
It has to be remarked furthermore that every additional step jteration, if further influences dependent on the surface
requires a new calculation of the whole series, because thetemperature are given, e.g., radiation, condensation, heat
number of step®/ is not only an indicator for the number of  tranfer by free convection [7]).
steps but is a parameter by itself. The physical assumption for the connection of Egs. (20)—

(24) is an immediate reaction of the surface temperature to a
3.2. Sudden temperature changes by boundary conditions change in the fluid temperature. The error by this assumption
of the 3. kind will disappear, if the stepsir are choosen as small as
possible.

When solving technical problems, changes due to heat By elimination of the unknown surface temperature the
transfer from a fluid to a solid—the 3. kind of boundary heat flux will be determined by the equations [1]: for just a
conditions—are more important than the boundary condi- single jump of the fluid temperaturedy, (N =n = 1)
tions of the 1. kind. The following conditions have therefore )
to be complied with: The hediux by heat transfer fromthe ¥y — %0 = Wy — ¥0.0)e* erfa(z) (25)

(21)
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and for repeated jumpsd s ,

N
2
PN —Vo.N = Z AVy g - €5 erfo(z)

(26)
n=1
with z=%/At(N +1—n), or
N-1 )
Yu,N —Po,N = Z AV N—p - €° eI’fC(Z/) (27)
n=0

with 7" = Z+/At(n + 1).

Using Egs. (26) or (27), the heat flg},—0 = a«(Pp.n —
Yo.n) IS determined directly. For the calculation of the
termse?” - erfc(z), an integration within the series is, indeed,
necessary. The approximation equation (28) holds fer3

1 /1 1
(-4

n 1.3
Jr 2275
3.3. Jumps of the heat flux, boundary conditions of the 2.
kind

e erfo(z) ~ — (28)

A heat flux is generated with a gradie@@

§=—r— (29)

0x

1029
and the temperature on the surface

2 N
Y —voo= — Agp -+ (N+1—n)At 35
o.N —%0,0 ﬁb; gn V(N +1—n) (35)

In the case ofj|,—o = const, it is to be set forn = 1:
Aq1 = ¢ly=0, and forn > 2: Ag, = 0. With N - At = ¢
Eq. (33) is valid again.

4. Extension to finite solids—flat plates with two
boundaries

In semi-infinite solids, the solutions of Fourier's equation
are given as a function of the vanabfl% In finite solids,
see Fig. 5, additional conditions for the heat transfer on both
surfaces are to be stated. For convective heat transfer, it is
usual to define the Biot number as a parameter for the case
in question

forx =0: Bio=aos/A, forx =s: Bis =a,s/A (36)

The solutions of Eq. (1) appear in form of series with
trigonometrical functions [1,2,8]. In the integral equa-
tions (5) with (6), these series are used instead of the error
functions.

4.1. Boundary conditions of the 1. kind on the one side and

This heat flux satisfies the same differential equation as thatof the 3. kind on the other side

of the temperature (Fourier’'s equation)

9%

9x2

194

= (30)

Up to now there is assumed a sudden jump of the temper-
ature A9y on the sidex = 0, immediately followed from
the surface temperaturedy, i.e., Bip = co, boundary con-

Therefore the solutions of Eq. (30) are in accordance dition of the 1. kind. On the other side= s a boundary con-
to those of the temperature. For constant heat flux on thedition of the 3. kind is given bBi; = a,s/A. In this case, the

surface of a semi-infinite $id with sudden addition of | ,—o
the following is valid

. . X
q =C]|x=0‘erfcz—\/a (31)

The temperature distribution in the solid by this heat flux is
obtained by integration of Eq. (29)

2 X
9 —00.0=—/1-qlx—0-iterfc 32
0,0 b\/— qlx=0-1 > Jat (32)
and for the surface temperature
B0 —00.0= —— 33
0 =170, J—b\[ Glx=0 (33)

It is a generally known fact that the temperature gefts

by ¢|x—0 = const, on the other side by a temperature rise
J/t the heat fluxg|,—o = const. If the heat flux is suddenly
repeatedly altered, the temperature distribution is given by

N
2 .
P —900=7 " Adgu -/ (N+1-n)At
n=1
X

2J(N +1—n)Ar

x iterfc (34)

solution for the temperature distribution gets Big = co

¥ — 10,0
1+ Big(1—x/s)
=AVo| ————————
0[ 1+B|s

B Z Z(M,n +B|2) Sin(imx/s) —p, -at/s i| (37)
m=1 Mm (Bls + B|2 + :u'm)
T
N
t=o00
" \
’3.0,0 =

o

—» X s

Fig. 5. Temperature distribution in a finite solid with boundary conditions
of the 3. kind on both sides.
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with u,, the positive roots of the transcendent equation

Pm + Bis -tgum =0 (38)

W. Kast / International Journal of Thermal Sciences 43 (2004) 1025-1036

The sumd_m converges for small stegst very slowly. For
short times, it is therefore useful and justified to employ the
results for the semi-infinite solid, see below Section 6. (Note:

Eq. (37) describes the stationary temperature distribution for when transforming Egs. (41)—(43) the following identity is

I — o0
1+ Big(1—x/s)
0 —0 =Ag—————
0.0 0 1+ Bi;
1 — A
ZA%M (39)
1o +s/A

The temperature distribution at the tirlfle= N - Ar can
be indicated for repeated jumpsyg , in constant time steps
At with the aid of Duhamel’s theorem again (see Eq. (15))

. N
14 Biy(1— x/s)
P —-tYoo=—"-"7T—"5—"—"" ZAﬂO,n
1+ Big =

N >\ fmSiN(mx/s)

N
n=1 m=1 Hm
% ef(NJrlfn)yL,zﬂaAt/sz (40)
: Bi2+12

4.2. Boundary conditions of the 3. kind on both sides of the
solid

There are two ways to solve the problem, see Egs. (20)—

(23) and Egs. (25) and (27).

(1) The temperature on the surfage= 0 has to be
calculated at every step from the following relations for a
temperature jump in the mediuna?y, andBig = aps /A

. a0
ao(Pm,n —Po,N) =qlx=0=—A—|x=0 (41)

0x
In connection with Eq. (40), the heat flux is defined by

Bis - A /s
1+ B'

+ - ZAﬁOn Zf

m=1

gly=0= (Mo,n —Y0,0)

7(N+lfn)~,u,2ﬂaAt/s2 (42)

and accordlngly the surface temperature

Yo,N — 70,0
= (Om,n — V0,0)Bisao/as

Bisag  Bi - 2

s s —psalAt/s

X - . m

|: o +1+B|S+me e
m=1

N-1

+ Z AYo,N-n - Z Jm e —Hpadt/s?

n=1 m=1

x (1 _ e—p,,znnaAt/sz)

Bi
X|: 5010+
s

2:|_1

Bi
1+ Big

o0
+ Z Jm 'e*lirznaAt/s

m=1

-1
] (43)

used

N N-1

Y AP0 f(IN+1=m)= ) APon—u fn+1) (44)
=1 n=0

by means of which it is possible to eleminate the unknown
temperature? o y from the sum withh =0.)

(2) The unknown surface temperature can be eliminated
in accordance with the above mentioned Eq. (25). The
solution for asymmetrical boundary conditions of the 3.
kind—x = 0: ag(Pyr — %0) = ¢lx=0 andx = s: a5 (Fy=s —

%0,0) = §|x=s—therefore is as follows [3]
¥ — 90,0
Um — 70,0

_ s —Xx n 1
- A (o7}
ad S —X
-2 Z {Sinum Big I:/Lm COSTﬂm

m=1
=)

. . S
+ Big sinu,,

X {Mm [Z,U«m sir? Mm

+ (Bio + Biy) (st — Sinum cosu) ]} 5 (45)
with the transcendent equation foy,

le(BiO + Biy)
t == 46
g tm M% ZBio- B, (46)

The first term in Eq. (45) represents the stationary
temperature distribution far— oo, with k the overall heat
transfer coefﬂmen;} =it

The heat flux in the solid follows by differentiation of
Eq. (45)

o0
. . . N
qg= 0y —170,0 |:k + 20 E |:S|nl/vm (,U«m SNy ——

m=1

— Bi, COSpty —— )e“rzn“’/sz}
X [Zy,m sin? U
+ (Bio + Big) (m — Sinfim Cosﬂm)]l] (47)
and forx =0

Glx=0=Om — V0,0

00
X (k + 200 Z S (im, Bio, Bis)ei'u'zﬂat/s

m=1

) (48)

Sinllm [im Sinll«m —Bi; COSim]

With £ (14m, Bio, Bis) = 21t SI? i +(Big+Bis) (1tm —SiNfLm COSitm)
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The following is valid for repeated jumps with Duhamel’s
theorem
é|x=0=k(l9MN—l70 0) T
+ 200 Z AVp Z S (um, Big, Bis) ' ZM}HJ
m=1
x ef(N+l n)MmaAt/s (49) At\%’ﬂ[,N-l ‘l i
| T
or 1t Ay 2
{
glx=0=k(@yu,n — V0,0 AN ¥ T
N—1 _..___t ZS&M,I
+200 Y AVy N Z £ (tm. Bio, Biy) y
n=0 m=1 T t 44— 0
x e~ Dubant/s? (50) n=1 2 3.ny npecceeo N2 NN
R
5. Breaking off the series aftem 4 steps, estimating the Fig. 6. lllustration of a series breaking of.
error

. . , The remainder ternR = A - F 1) has
Small steps in the time are needed if the temperature Z” +1 AN - F(n + 1)

A9y () must be reproduced with high accuracy or if the [© be approximated by the sum of the jumpsy Ty =
alterations follow in a long interval. In these cases, the A¥uy, N—n (OanAH Agn-—n) multiplied with a mean value

number of stepsV can grow very high and therefore the F(n 4 1) for the number of stepsy + 1 to N — 1:
qguestion is whether the series can be broken off after

steps and whether the residual terms of the serie can be Nl

replaced by an estimation. =F(n+1) Z AN-n (56)
Asitis seenin Egs. (27), (42) or (48), the first alterations natl

in A¥y hold a decreasing effect with growing numbevs It is obvious that this mean value can be replaced by an

of steps, i.e., the temperature distribution is being influenced jntegration instead of the sum in the same range
by the last steps strongest. The series in the equations named

above can be written in a generalized form 1 N1
— F )= F Ld 57
N-1 (n+1) N-D-0.1D / (n+Ddn  (57)
N —PoN= D AN Fn+1) (51) na+l
e.q., Eq. (27): =0 The integration with the sum of Egs. (52)—(54) leads to
N-1 — 2b VN —na+2
Z/2 1 F = (58)
OuN—DonN= Y Adyn_n-e -erfc) (52) aov/TVAL (N =1) = (na+1)
n=0 .
or Eq. (35) respectively
, N-1 7 Z 2V At 2 N32_(np+2)9%2 (59)
Po.n —Po0= =7 ;AQan\/(n‘f‘l)At (53) L7 3 (N-D—(at D
or Eq. (48) respectively
N—1 _ e VN ,l-(a+2)/N _q
‘2|x=0=20102 AVM N-n 'f‘eiv(nJrl) (54) F= VN 1- (na+2)/N (60)

n=0
These sums may be divided into a correctly calculated
sum and a resR, see Fig. 6:

(Note: the approximate equation is used in the integration
of Eq. (58)

N-1 22 ’ 1

et -erfo(z') = 61
ZAan'F(nJrl) (@) 7T (1)
n=0 N_1 for 7/ = % (n+1)Ar > 5. This can be done, because

_ZAN aFn+1)+ Z ANpn-F(n+1) (55) breaking off the sums is only possible following a great

n=0 matl number of steps4.)
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If the remainderR consists of only one termy — 1= 5 F(_;lz_}o_
74 +1,Eqs. (58)~(60) resultif = 0/0. The limiting values | W00 0. 05) with (@
are T
b 1 4} ~+—+— €q.(48)
R = W A : ﬁ : (17M,N—nA—1 - ﬁM.,O) (62) *—%—% ed.(48) with y, only
. - 3
respectively
R=Yq-VN (63) .
respectively
e VN 14 bt
R=f" TN (OM,N-ny—1— VMm,0) (64) | %§=u',1 b2 04 o 1',5\\‘\
Egs. (58) and (62) foF andR, as well as (60) and (64) e
converge with growingV, but not Egs. (59) and (63) for the 25 0 “© 180 o B 10s
heat flux. Therefore, the baking off the sums of the heat
flux is not allowed. Egs. (59) and (63) are irrelevant. Fig. 7. Dimensionless heat fluy|,—o for short times after Eq. (25) with

It can be recognized in the above equations that the Eq. (20), after Eq. (48) for the complete solution and after Eq. (48) for

. . S the solution withyuzq only. The parameters arerg = 40 W-m—2.K~1,
implementation of the correctly calculated series in the a5 = 20 Wm—2K-L, 5 = 0.4 Wm-LK-1, ¢ = 1000 Jkg~ LKL

remainder termR occurs continously, which is a sign that  , — 400 kgm=3, » = 400 Wsl/Zm=2.K-1 4 = 106 m2s 1,

the rest term has been calculated in a suitable way. k=8W-m2.K-1 1, =15004.
-
6. Approximate solutions pe k(5,00
)

The complete description of the temperature distribution

from the first step to steady (or quasi-steady) temperatures 2.0

requires long series with slow convergency, especially in \K\"\’\,
the beginning. Several approximate solutions are known to
handle this difficulty [2,6,8]. Thereby, the complete solution

is divided into two parts: one part, in which the equations

of the semi-infinite solid are valid at the beginning of the 1,01
process, and a second part, ihieh the steady temperatures
will be obtained. In this second part, only the first term of the

1,5

series)  m with w1 is necessary to describe the temperature % £-01 02 04 08 16
process in the time.
The example in Figs. 7 and 8 shows the heat §lo I —_—
for a flat plate with asymmetric boundary conditions of the 25 0 @ 180 60 B0 w020 s
3. kind by a sudden jump#, in the fluid medium and an -t
initial temperature¥p o # f(x), see above Section 4.2. Fig. 8. Like Fig. 7, but permuted heat transfer coefficienig =
In Figs. 7 and 8 the heat flux.—o = f(r), respectively, 20 Wm=2k=1, o5 =40 Wm=2.K~1,
= f(at/s?) is related to the stationary heat flgx= k(9 —
%0.0): These statements can be generalized, because the same
functional dependency of the parameters is given:
(1) the complete solution after Eq. (48), 2 2
(2) the solution alone with the first terpy (u1 = fBio, 2= 2L ~“L with i~ 22
Bi,), see Fig. 9, Aep s A
(3) the solution for the semi-infinite solid after Eq. (26). Therefore, two possibilities exist for an approximate calcu-
lation of heat flux in the above problem:
These figures show: 1)
at 7|x=0 o .2
(1) % <0.3: Eq.(26) and Eq. (48) are identical. 2= 0.3: m = ?ez erfe(z) (65)
(2) f—z > 0.3: solution with the first termuy is identical to at _ lx—0
the complete solution. 2> 03 KO —Po0)

3) ‘;—5 > 1.6: the steady-state has been obtaingd.o/ o 2a)s?
k(l?M—ﬁo’O):l. =1+27f(/141)6 g1 (66)
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= —1
3,00 — =
,r" /:__
275 /’ =
/"—
"1250 /f / =
2 V
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225 // =
7,
/AP
. 7 |
P e e O
175 oS A / 1 1]
ST A g // -
. N L ——1—3
Lsa_—_-:_e_iz_/;é/ %/// 3
+— 6 ‘_‘//
1,25 T 4‘// /VA//
wol T2 ] 77
..-..__J—- 1—j§ ’
=T
.04 —"///
0,50] 0,2 /
A TTS - Fig. 10. Like Fig. 7, butg = 0o, k = 10 W.m~2.K 1, iy = 2.0288.
’ :;:’{’.—0-01‘
Zadl
0 gol 2 5 ol 0z 05 1 2 5 0 20 50 1009 ¢ eq. (65) eq. (66)
— % }
nAt -
Fig. 9. The first roofu of Eq. (46), from [3]. A
A’&M,n‘ nsAt
(2) nt-At
o 2 qlx=0 ap .2 A
—et erfo(z) >1: ———————— = —¢° erfe(z 67 A
RO O G —v00 k¢ S BT Ay e
o 2 qlx=0
—eterfe(z) <1, ——M =1 68 s? .
k o(z) < k(ﬁM_ﬁ0,0) ( ) 0 t=035 T=NAt
with z =%«/(N + 1 —n)Ar andk the overall heat transfer Fig. 11. lllustration to Eqgs. (65) and (66).
coefficient.

The second approximation results in some bigger devia- and Eq. (40) withx1 has to be used if; > 0.3s2/(a A1):
tions—up to 10%—which may be admissible considering

the uncertainty of other assumptions, e.g., the heat transfer qlx=0

coefficients. k(Wm —P0,0)
The approximations by Egs. (65)—(68) should be proved oo N AD
for a boundary condition of the first kind, i.eg = oo, too, =1+ 27 Z 5 M;
see Fig. 10. This confirms the proposed approximations for n=1 MN—V0,0
the entire range of heat transfer coefficients to a flat plate. oS OLS N lema2 AL /52
Eqgs. (65)—(68) are valid for just a single jura?y,. For X f(ﬂlv B T) cem(NHmmaig /s (70)

repeated jumps, these equations can be extended using the , .
Duhamel's theorem as shown above. Thereby it is to notice, | "€ Number of the steps is the same for all jumpa ¥y, ..
that with every jump on the side = 0, a new temperature  Ed- (70) is valid for the steps > n, with the sum(n; + 1)

front in the solid will be prodoed, which reaches the other @ N This procedure is illustrated in Fig. 11.
sidex = s in the dimensionless timer /s2 = 0.3. When applying the approximation equations (67) and

When applying the approximation equations (65) and (68), every jump has to be calculated with Eq. (26) until the
(66), Eq. (26) has to be used for a calculation if the step St€ady state value

numberm, < 0.35%/(aAt): lx—0 Ay 1)
lx=0 k(@m,N —P0,00 Omn—7P0,0
k(Om — %0.0) has been reached. When finally, all jumpsiy , have
N Ao reached the steady state, tblowing equation is valid
_x Mo 2(N41-n)At _
= k Z ﬁM V= ﬁo Oe erqu) (69) q|x:0 _ Z,]lvzlAﬁM,n B
n=1 """ ’ 1 (72)

k(OuN — D00 Omn—D00
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=. &) =& with A the amplitude of the oscillation},, the constant
! mean temperaturey = 27/ 1o, to the period. The tempera-
noAt - ture field for the stationary state {> oo) is described for
the boundary conditions of the first kind by known equa-
"W“'L- At tions, corresponding to Eq. (73):
¥ At D (x, 1) — Oy = Ae ¥VT/@0. Sin(a)t —x /%) (75)
atg
A .
‘9’;4 '&lm and to Eq. (74):
0 %e’felfczﬂ T=NAt ﬁ(x,t)—ﬁm:Ae_xV”/mo-COS(a)t—x /l> (76)
ato
Fig. 12. lilustration to Egs. (67) and (68). For the heat flux at = 0, it follows with ¢|y—o = —A 3%
The number o_f st_epak is the same for every jump, as Q|X:0=Abﬂsin<wt+ Z) (77)
demonstrated in Fig. 12. 4
and
7. Summary Glemo = Abﬂco{wt + %) (78)

The theorem of Duhamel makes it possible to calcu-  the preceding equations are valid, as stated above, for
late the effects of repeated alterations in the boundary e stationary state after the transient disturbances at the

conditions—in the fluid or in the surface temperatures or in a4inning of the oscillations have disappeared. The effects
the heat transfer coefficientder the temperature distribu- of the disturbances are different for an oscillation of a

tion and the heat flux in a solid. The alterations in the bound- sine function and of a cosine function. For a sine function,

ary conditions can be stochastical and will be adapted to a”Eq. (73), the temperature rise in the beginning is nearly

imposed or forced process by jumps with steps in the ime. | o and the heat flux can loalculated with Eq. (11) and
This procedure results in matmatical series, which will be Ado = Awt coSwt), written in a dimentionless form
extended by every new alteration for further steps. | )

The application for semi-infinite solids is possible with  41x=0
the aid or;perror function. For solids with twg boundaries, Abw ﬁﬂcos(wt) (79)
e.g., flat plates, solutions are known with Fourier functions,
which by Duhamel’s theorem result in double series. A suf-
ficient accuracy for technical applications will be reached
by an approximate solution for the semi-infinite solid and
for longer times from an approximate Fourier function (first
term of the series). This process requires a change fromoneglx=0 _ 1 1 (80)
mode to the other during the calculations, but this can be Ab /o /7 ot
done numerically. Based on the statements mentioned above, .
Duhamel’s theorem is an universal tool to calculate con- W'tg“;i]?ho'l' fah : ilati be derived
secutive alterations of boundary conditions and their effects fromoa eise?aﬁassc()elz t(i)or? inar:r))n ogc OS? 1a |02n OcanTheereeg\r/g
on the temperature distribution and heat flux. This has been g€ N N [3] (Egs. (11), ( ))'.
demonstrated by some examples. two functionsu™® andv* (parts of the error function ef)

with complex argument({/ %, 2&3 +,/%)) defined. For
the corrections of the heat flux by the disturbances, the
Appendix A. Testing the theorem of Duhamel for a differential quotients ofi* andv* are needed:

temperature oscillation by a periodic function

with wt < 0.1. For a cosine function, Eq. (74), a jump in
the surface temperature is forced foe 0, %h:o = 0.
Therefore the heat flux at= 0 is infinite. For small values
of wt itis valid (Eq. (17),N = 1):

) av* AbJw av*
, . dlx=0=—Ao—| =-— ' (81)
A further test for the extended Duhamel’s theorem will be dx lx=0 2wt 3(x/24/at) .o
demonstrated in the application for a temperature oscillation and
in the medium by a sine or cosine function.
Oy — Om = ASi 73 hoo=—220]  — Ao o (82)
M — Om = Asin(or) (73)  ab=0= A 0T 2var  8(rj2var) o

or In Fig. 13 Egs. (81) and (82) are drawn, calculated from

Oy — O = Acoqwt) (74) the tabulated value in [3]. For the heat fluxsat= 0 with
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\\ V7
|

% l—&. = sin(@t) .l A=1

q"” = sin(ewt +5) + €9-( .
|t =00 /

__L"i‘.q(ea)o /

eq.(86) * WAt —»= 0

eq.(86) + WAE = 9°

du*

zVZ:T: d(xIZV:L_O

~p
1

1 dv*
2Yae d(xIZVaT)L=0

0
i
g

AN

ii_‘Lil!

T T

-1

|
I
’ 3
0 Zlﬂ' id - 29y —= b %ﬂ'

Fig. 14. Temperature oscillation by a sine function and corresponding heat
Fig. 13. Corrections of the heat flux due to disturbances. flux at x = 0 for a boundary condition of the 1. kind in comparison of the
analytical solution Eq. (83) ith the Duhamel theorem Eq. (86).

regard to the disturbances it follows:

dlzo _ AV dv* “H o 1ok
AbJo ZS'"(“”Z) T 2ver a2 b & N
0 oo %) 4 5 ) At
Ab/o 2Vt 3(x/2:/at) o \ 0.9 ¢ at

It has to be proved whether the extended Duhamel \\ e

theorem can be used for calculating these Egs. (83) and (84). , )
The general equations of Duhamel’s theorem are derived

in Section 3, Eqgs. (18) and (19) for a boundary condition of

the 1. kind. For an oscillation of a sine function, Eq. (73),

the temperature changa&syo ,, for every stepAr are given

by

¥
Aﬁo)n = E

= AwAt -coSnwAt), n>1 (85) Fig. 15. Like Fig. 14, in comparison to Egs. (84) and (89) for a temperature
oscillations by a cosine function.

-1

n

and Eq. (19) for the heat flux on the surface- 0 gives

. N
dli=0 VoAt Z cognwAr) . . . . .

= (86) Fig. 14 for the sine function and Fig. 15 for the cosine-
AbJo T VN+1=n function show a comparison of the analytical solutions of

For an oscillation of a cosine function, Eq. (74), the first EQs- (77) and (78), respectively (83) and (84) with the

temperature change for= 0 is a jump solutions by Duhamel's theorem Egs. (86) and (89). It can

be seen that the phase shift/of4 sets in very rapidly and
Avo1=A (87) the disturbances vanish after one period of the oscillation.
and then the following changes obey the analogous equationMost.significantly, it has tg be recognized that the analytical
to Eq. (82) solutlon_s an.d the soluthns by Duhamel’s theorem_ are

almost identical. Small difrences are due to numerical
AV =—AwAt -SiN(nwAt), n>2 (88) inaccuracies. A condition fothese good agreements is to
In this case Eq. (19) has to be written in the form choose th? time steps as small as possible; = 0.002=

0.1°, even if the number of stepg will grow reciprocally to
4lx=0 1 1 1 wAt (compare the dotted line and the full line for Eq. (86),
AbJo  Jm \/— JN respectively Eq. (89) in Figs. 14 and 15).

The examples above demonstrate in a convincing manner

VoAt Z sin(nwAr) (89) how the Duhamel theorem is applied for more complex
= JN+1-—n temperature variations.
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